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.ﬁﬁ I. SUMMARY
fij This progress report describes the results of research work on the
2 characterization of fracture behavior in boron/aluminum (B/Al) composites

at room and elevated temperatures during the period June 1, 1980 to

May 31, 1981. The study has been directed toward the deformation

e characteristics and notch sensitivity of center-notched B/Al composites
and particular attention is given to the proper test procedures and

iff analytical approaches employed.

The overall research program covers many aspects associated with the
deformation characteristics and failure mechanisms in a wide variety of
3 center-notched boron/aluminum laminates and unidirectional systems of

various constituents. Employing a range of experimental techniques and

i
- procedures for comparison purposes, the program has focused on examinatjon
;{f of crack tip damage growth, fracture strength and notch sensitivity,

ii{ failure modes and their associated characterization methods, the effect(s)
= of constituents on fracture behavior, and microstructural studies. The

- primary experimental technique has been to utilize the interferometric

i;% displacement gage (IDG) through which the actual crack opening displacement
25 (COD) can be measured at room and elevated temperatures, resulting in

.5 exact load-COD and local compliance curves. Special attention has also
?i been given to acoustic emission for evaluating internal damage and damage
i; growth. As can be seen from the scope of the research work, the purpose

has not been merely to generate quantitative data but also to assess the
appropriate methodologies for characterizing a new composite material
system.

In the current year program, emphasis has been placed on interfacing
the experimental instrumentation with a data acquisition system. Software

was developed for real time data acquisition and subsequent data analysis.

1
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Specifically, the interferometric displacement gage was interfaced with
the MINC-11 minicomputer allowing for final analysis of local compliance
:{3 and plotting of load-COD curves, and standard compliance gages and
strain gages as well as the acoustic emission instrumentation have also
been interfaced with the data acquisition system, the last of which
~;f allows monitoring of damage progression during fatigue loading.
This report presents representative data on the fracture behavior
of unidirectional boron/aluminum at room and elevated temperatures,
o preliminary data on the notched strength of B/Al laminates, strength and
acoustic emission data of boron filaments, and acoustic emission data
on B/Al laminates during quasi-static and low cycle fatigue loading.
g A complete description of all experimental procedures and techniques

has been given in the previous progress reports.
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II. INTRODUCTION*

The mechanical behavior of boron/aluminum (B/Al) composites has been
studied extensively over the past decade due to an increasing recognition of
its advantages in terms of broader operational temperature ranges, higher
impact resistance, strength and stiffness, and significantly better transverse
and shear properties. Currently, boron/aluminum composites maintain their
position as the primary metal matrix composite material for aircraft and
aerospace applications based upon superior properties and performance
experience [1].

A subject of extreme concern is the fracture behavior of B/Al composites
which exhibit extremely low elongation up to fracture, and several studies
have addressed this isgsue [2-8]. The applicability of linear elastic fracture
mechanics (LEFM) to unidirectional B/Al has been discussed [2,3,4] with varying
conclusions. For example, Kreider and Dardi [2], and Mar [3] concluded that
the correlation between fracture strength g and half crack length a is best
described by an equation of the form cfam = const. However, contrary to LEFM
predictions, the exponent m was found to be less than one half. Wright [4]
concluded that LEFM caa be applied, provided that the crack extension prior to
failure is added to the initial crack lemgth. With this assumption, the data
of [4] as well as [2] agree with predictions based on LEFM. This assumption
follows, in fact, the analytical models proposed in [5,6] for notched strength
predictions of composites. Hancock and Swanson [7] concluded that the conven-
tional concepts of fracture toughness can be useful in characterizing the
toughness of unidirectional B/Al. Sun and Prewo [8] showed that the fracture

toughness of B/Al can be described by LEFM provided the crack extension is

* This introduction first appeared in the former Proposal and is included here
for the sake of completeness.
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colinear with the initial pre-machined notch, as is the case for [90°] or
[0°/90°] laminates of compact tension specimen geometry. For unidirectional
B/Al, such an approach is not relevant [8] due to the large amount of plastic
deformation of the matrix parallel to the filaments. Similar damage growth
and modes of failure under static and fatigue loadings have been observed and
discussed in [2,9,10,11]. 1In general, it has been shown that the failure

of unidirectional B/Al is preceded by longitudinal plastic deformation at the
crack tip which eventually leads to matrix cracking and crack tip blunting,
all of which contribute to the crack arresting mechanism. The incipient matrix
cracking has been described by the elastic stress intensity factor [9].
Obviously when different analytical approaches and experimental techniques are
employed to define fracture toughness, the resulting toughness values vary
significantly. Nevertheless, the majority of the values are still very
promising in comparison with other metal or resin matrix composites.

With regard to mechanical properties, attention has been directéd primarily
toward unidirectional 5.6 mil B/A1-6061F. However, with the more demanding
requirements for toughness, recent attention has been given to other material
systems, e.g., unidirectional 8.0 mil B/A1-1100F, primarily for jet engine
fan blade applications. For such applications, better impact resistant and
less notch sensitive material systems are being sought. Charpy test results
[12-14] have shown that 8.0 mil B/Al-6061F does demonstrate certain advantages
over the more common 5.6 mil B/A1-6061F. The choice of low shear strength
matrices such as 1100 aluminum, combined with high strength fibers provides a
material system capable of dissipating high levels of energy upon impact load-
ing [12]. Limited studies have also been directed toward the use of B/Al
laminates [12,14].

Despite the many studies on the fracture behavior of unidirectional 5.$§

mil B/A1-6061F composite, a complete and definitive correlation between the
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observed failure modes and the deformation characteristics is lacking.

8.0 mil B/A1-1100F or B/Al laminates have received even less attention with
regard to their deformation characteristics and notch sensitivity. Under
operational conditions the fracture behavior of all boron/aluminum composite
systems remains incomplete and/or unreliable.

The primary objective of this study has been to characterize the
fracture behavior of boron/aluminum composites at room and elevated
temperatures experimentally and analytically. Examinations include the
deformation characteristics of center-notched specimens, change in compliance
with crack length at various temperatures, load-displacement curves at
various temperatures, fracture strength and notch sensitivity, failure
modes, microstructural studies of interfaces, and monitoring of crack tip
damage growth. Data to be obtained and procedures to be employed entail:

« Load-crack opening displacement (COD) curves using the laser
interferometric displacement gage technique.

+ Far~field load-displacement curves using the standard
compliance gages.

» Local and global compliance curves.

+ K-calibration curves.

+ Fracture strength and notch sensitivity.

» Crack tip damage growth, deformation characteristics and
failure modes.

+ Microstructural analysis of failure modes, e.g., examination of

fiber, matrix, and interface by optical and electron microscopy

tec 1iques.
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. Detection of damage mechanisms and internal damage through X-ray

Ao b

radiography, ultrasonic C-scan, and acoustic emission.
*» Monitoring damage growth through acoustic emission, e.g., location
53 and amplitudé distribution histograms of events, counts and count
rate, and cumulative event amplitude distribution.

* Acoustic emission studies on constituents and "simple" structures.

PPV TV LV RN P wuTS

- *+ Correlating acoustic emission information with actual deformation S

characteristics and failure modes.

* Fracture behavior of unidirectional versus laminated boron/aluminum.

e Effect(s) of elevated temperatures on fracture behavior.

« Mechanical properties (elastic cons.ants) at room and elevated
temperatures.

» Axial splitting in notched unidirectional boron/aluminum.

. Effect(s) of constituents (e.g., fiber, matrix) on fracture behavior.

» Applicability of the resistance curve method (based on COD and
displacement measurements) to the various boron/aluminum systems.

. Determining the proper test methodology to be employed in character-
izing a new composite material system.

Comparison of experiments with the assoclated analyses.

...........
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5'} IIT. PROGRESS DURING THE CURRENT PROGRAM

e A brief summary of the work carried out during the current period is

a5 given below.

Generally, our research activity expanded along the directions outlined
on pages 5 and 6 of this Report covering a variety of issues which are
all directly related to the understanding of the fracture behavior of

boron/aluminum composites. Subjects which received emphasis were compliance

curves and load-crack opening displacement curves, crack tip damage growth

and failure modes, fracture strength and notch sensitivity, monitoring damage
!éi growth during quasi-static loading and damage accumulation during fatigue

‘ loading by means of acoustic emission, and microstructural studies using
scanning electron microscopy and photomicrography. All these studies (besides
a the acoustic emission monitoring) were conducted at room and elevated

: temperatures, primarily on unidirectional boron/aluminum, with some preliminary

studies on boron/aluminum laminates.

The progress to date and some representative results are given in this

section.

A. Preparation of Laboratory Facilities

The experimental procedures employed in this program include a variety
of techniques from which the material mechanical properties, fracture behavior,
deformation characteristics, damage accumulation and failure modes were
examined. These techniques include: 1laser interferometric displacement gage,
strain gages, extensometers, acoustic emission, X-ray radiography, scanning
electron microscopy, data acquisition systems, etc. These techniques were
developed during the initial phase of this program during which period specific

facilities were purchased, as described in Section Il of the previous Progress
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During this period emphasis has been placed on expediting the data
reduction and analyses schemes. For this purpose significant time and
effort has been spent to interface the data acquisition system (PDP 1103

Model MINC-1l) with several of the laboratory components, for example:

1. The laser interferometric displacement gage (IDG): with the IDG,
the actual crack opening displacement (COD) can be measured very accurately
‘*; on the sub-micron scale. The COD is obtained as a function of time, and
!II when correlated with the load-time curve obtained from the Instron's load-
cell, highly detailed load-COD curves can be reduced. The manual data
*ii reduction scheme i3 very time consuming, therefore a successful attempt
has been made to interface the IDG with the data acquisition system. Now

the whole process of data acquisition, reduction, analysis and plotting

(Hi-plot plotter) is automated, resulting in final results of local
compliances and load-COD curves. A detailed computer program prepared
by our laboratories is provided as an Appendix to this Report and is
submitted separately. Certain modifications of the program, such as

monitoring crack tip damage growth through compliance matching, are underway.

2. Compliance Gage and Strain Gages: the monitoring of displacements

by means of compliance gages and strain gages have also been interfaced with

A

the data acquisifion system. Again, load-displacement curves, global compli-

vie'ls
2.

ances, stress-strain curves and mechanical properties (such as strength and

[ N 2 o Al ghd
RSN

stiffness) are monitored during the test and data are recorded, reduced,

analyzed and plotted by the MINC-11l. A detailed computer program for this

v
vald,
PR}

scheme 18 also provided in the separate Appendix.

ey
0 .l I A
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3. Acoustic Emission During Fatigue Loading: the Dunegan/Endevco

R

3000 series system has been interfaced with the data acquisition system

for the purpose of monitoring damage progression during fatigue loading.
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A separate computer program has been developed through which the number of
events and number of events per load cycle at different load levels are
recorded. The recorded data are reduc;d, analyzed and plotted, resulting
in plots of events and events per cycle as a function of number of cycles
at different load levels. The details of this computer program are also

provided in the separate Appendix.

B. Materials
All material to be tested in this program has been purchased and
machined. Two types of specimens are tested: center-notched specimens
200 x 25 mm (8.0 x 1.0 inch), and unnotched specimens 200 x 13 mm (8.0
x 0.5 inch). The total number of specimens for each material system has
been outlined in the former Proposal and Progress Report. The specimen
preparation procedures include measurements, tabbing and the introduction

of micro-indentations to those specimens to be tested with the IDG.

C. Mechanical Properties

The elastic stiffnesses and strength for unidirectional systems
were obtained experimentally at room and elevated temperatures, as outlined
in Tables I and II. In addition, basic fiber properties (5.6 mil and 8.0 mil
diameters) were tested for strength, Table III. The scatter in strength has
been characterized for the composite and individual fiber data of Tables I
and III using the two-parameter Weibull distribution, Figures 1 and 2. Acoustic
emission distributions of events for the individual fibers (5.6 mil and 8.0 mil
diameters) were correlated with those obtained for various boron/aluminum
composite systems, and a detailed discussion of the acoustic emission testing
and results is given in part I of this section. A selected number of tests
were also performed on aluminum matrices manufactured through a process identical

to that used for the composite material.
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= D. Elevated Temperature Compliance Curves

r" Local compliance curves obtained with the IDG at room and elevated .
o
3 temperatures were obtained for various notch lengths. As mentioned in part A,

the IDG has been interfaced with a data acquisition system. Typical outputs

are shown in Figures 3 and 4 for notched unidirectional 5.6 mil 6061F
boron/aluminum at 21°C (70°F) and 316°C (600°F), respectively. The standard

procedure of the test program is for each specimen to be loaded to approximately

5% of the expected ultimate load, and then iunloaded. This loading/unloading
cycle is repeated three to six times. The local compliance is calculated for
each of the load cycles, the average of which is used in the subsequent
analyses. As shown in Figures 3 and 4, the results are highly reproducible
with very small standard deviation, Table IV. This technique is easily applied
in elevated temperature measurements as well, Figure 4. Similar results were
obtained for [90’]8 specimens, Figures 5 and 6 for 21°C and 316°C, respectively,
although the displacement is much smaller due to the low load levels that

can be applied within the elastic region. Results are also very reproducible
for these cases, Figures 5 and 6 and Table IV. A summary of the results for
[0°]8 specimens is shown in Figure 7 and Table V at different temperatures.

It should be noted that the large scatter in data prevented a distinction of
the effect of temperature on compliance. Therefore, the local compliance
measurements were carried out on the same specimens at different temperatures,
Figure 8. A significant effect of temperature on local compliance is clearly
observed, beginning at temperatures of 260°C (500°F), Table IV and Figures 9
and 10. In order to be able to predict this dependency on temperature, the
variation of transverse and shear moduli with temperature must be established
for the subject material, and this testing is planned for execution in the
next phase of the program. Data on the global compliance tests obtained with

the compliance gage are given in Table VI.

10
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ﬁ;% E. Elevated Temperature Load-COD Curves
r!l The effect of elevated temperatures on the deformation character-
;fi istics of notched [0‘]8 and [90"]8 has been investigated. Load-COD curves at

different temperatures are shown in Figure 11 for unidirectional 5.6 mil B/Al
6061F. A significant effect of temperature on the deformation characteristics
and notch tip damage growth appears at temperatures above 93°C (200°F). Ac

the higher temperatures there is an increase in non-linearity in the load-COD
curve, resulting in large COD at failure. Both the nonlinearity in the load-
COD curve and the large COD at failure are attributed primarily to the greater

ductility of the aluminum matrix at these elevated temperatures. Note that

the typical failure mode at the crack tip is matrix shear plastic deformation
along the fibers and in the loading direction. In other words, differences
between the curves indicates much larger crack tip damage growth at elevated
temperatures which results from the elevated temperature properties of the
matrix material. A variation in fiber-matrix interface properties at higher
temperatures might also have some effect.

For predicting the load-COD curve at elevated temperatures, a model
suggested by [22] and successfully applied for room-temperature load-COD
curves in [18] has been used. In applying this model, an appropriate yield
shear stress of the aluminum matrix, Tys must be selected. The experimental
load-COD curves were compared with theory, using different values of T, at
the given test temperatures and it seems that a good correlation can be
established, Figure 1l1. It should be noted that the values of‘*:m given in
the table of Figure 11 were chosen arbitrarily to fit the data. Additional
testing is warranted to determine the actual yield shear strength of aluminum
at different temperatures. However, a good agreement has been established

for various notch lengths with similar values of Tot

11
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F. Fracture Strength and Notch Sensitivity at Elevated Temperatures

1‘ Notched strength of unidirectional [0°], and [90°]g 5.6 mil B/Al

]8
6061IF at elevated temperatures up to 314°C (600°F) have been recorded, Tables

VII and VIII. The results for the unidirectional specimens indicate that up

el A g

to the maximum applied temperature neither axial strength nor axial stiffness
degradation is observed, Tables I, VII and Figure 13. The elevated temperature

notch strength data fall well within the scatter of the room temperature data, ]

Figure 13. In other words, there appears to be no effect of temperature on
;: the fiber controlled properties. On the other hand, the experimental results
‘ for the transverse [90‘]8 specimens demonstrate significant dependence of

notched strength on temperature, Table VIII, indicating again the effect of

matrix comtrolled properties on the fracture behavior of the subject material.

ff G. Notch Sensitivity of Boron/Aluminum Laminates

Preliminary tests on the notched strength of a variety of boron/

aluminum laminates have been conducted in which global compliances, fracture

R strength and acoustic emission data have been recorded. Notched strength data
for the [0/50]28 laminate indicate significant notch sensitivity. A comparison
of the notched strength and global compliances for the various laminates

(2a/W = 0.2) shows the significant influence of laminate configuration. The
data showm in Table IX indicates the importance of pursuing broader studies
into the fracture behavior of boron/aluminum laminates both at room and
elevated temperatures. Such studies will constitute a major effort during

the next phase of this research program.

H. Constituent Properties

In order to evaluate the global mechanical properties and fracture
behavior of the subject boron/aluminum composites, emphasis has also been
placed on the constituent properties. For this purpose, representative fibers

12
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used in the fabrication of each plate were purchased along with aluminum

plates that were fabricated by the same procedure as the boron/aluminum

composite plates.
&;ﬁ A total of 19 fibers 5.6 mil in diameter and 17 fibers 8.0 mil in

- diameter were tested for ultimate strength and acoustic emission amplitude

levels, Table III. Note the very large scatter and low average of the
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fiber strength. The data from Table I for composite strength and the data
from Table III for the fiber strength were fitted to the two-parameter Weibull
distribution function, Figures 1 and 2, indicating very low shape and scale
parameters. A comparison of Figures 1 and 2 explains the relatively low
strength of the unidirectional 5.6 mil boron/aluminum 6061F tested in this
program. The same conclusion can also be shown by applying the elementary

rule of mixtures using the 45 volume fraction of the fibers in the composite

plates.

I. Acoustic Emission

Additional testing was performed on monitoring acoustic emission
in boron/aluminum. These studies focused on the potential of using acoustic
emission to identify failure modes in different boron/aluminum laminates and
to monitor damage progression during low cycle fatigue loading.

The identification of the major failure mechanisms, namely fiBer failure
and matrix plastic deformation, was attempted by analyzing the amplitude
distribution histograms of events for individual fibers and for a variety of
boron/aluminum laminates. The results for the individual fibers indicate
that practically all fiber fractures are associated with very high amplitude
levels of events, i{.e., 95 to 98 dB, as indicated in Table III. Figures 14
to 19 show the amplitude distribution histograms of events for notched [0°]8,

[90']8. [0/90]2., [245]23, [Oé/tésls and [0/+I45/-45/9O]s 5.6 mil boron/aluminum

13
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6061 laminates, respectively. Clearly, each of the laminates results in a ‘

different amplitude distribution histogram.

Acoustic emission was also monitored during fatigue loading. Fatigue
tests are performed under load control mode at a frequency of 1.0 Hz up to
a maximum of 5000 cycles. The fatigue stress ratio was set at 0.1l. Exami-
nation of the acoustic emission data (as well as observations of crack tip

damage growth via the closed-circuit television system described in part J)

[ P TS P O

indicate that initially most of the emission occurs at the maximum load level.

However, as the number of cycles progresses, a large percentage of the emission ﬁ

occurs during unloading and during loading at load levels much below the
maximum load level. This indicates that not all of the emission accumulated
during the fatigue loading is necessarily emitted from newly created damage
surfaces, but 1s due rather to friction between existing fracture surfaces
and is caused by crack closure during the fatigue loading.

Generally, it was determined during the initial phase of the program that
a significant amount of emission was due to such existing damage. Therefore
special efforts were made to distinguish the emission caused by newly created
damage from that caused by friction among existing fracture surfaces. A

computer program was developed for the MINC~1l data acquisition system to

monitor acoustic emission during fatigue loading. The program also monitors
the number of events accumulated at a predetermined load range for each load

cycle. The details of this computer program are given in the Appendix to this

I SRS SR P

report.

The predetermined load ranges were set arbitrarily at 60%Z, 80Z and 95%

of the maximum fatigue load (Pmax)’ and events accumulated throughout the load

cycle (0=100% of Pmnx) and those accumulated in the 60-100%, 80-100% and 95~

l_.L“ Py "" 4

3 100% of Pmlx were plotted as shown in Figure 20. To emphasize the amount of
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emission occurring at low load level ranges (and attributed to friction) the
events accumulated during 0-602, 0-80Z and 0-95% are shown as well. The
amount of emission occurring due to friction is therefore clearly seen in
Figure 20. The table shown in Figure 20 displays the dynamic stress level,
Ope the number of events occurring in the first cycle, Eo’ and those occurring
during the fatigue loading, En' In order to amplify the variation in emission
during the fatigue loading, the slopes of the curves shown in Figure 20 were
calculated and plotted in Figures 21 and 22. The amount of emission occurring
at low load levels, i.e., emission due primarily to friction, is clearly
indicated. Figures 21 and 22 also indicate the pattern of damage progression.
It is clearly seen from Figure 21 that sudden damage increases occur at

if approximately 500, 900, 1400, 1900 and 2400 cycles, which can be correlated
with the actual progression of splitting. The correlation is verified through
both the location distribution histogram of events and the visual observation
of damage progression via the closed-circuit television system.

Generally, from the plots such as those shown in Figures 20 to 22, the
cycle number at which a sudden damage growth takes place can be readily and
precisely determined. From the location distribution histogram of events
(not shown here) the approximate location at which the damage occurs can be

determined as well. The amplitude distribution histograms such as those showm

L0 ’.:

in Figures 14 to 19 might provide clues as to the type of damage occurring.

'-.L!, A

In other words, it seems that the monitoring of damage progression during

o'
¢ l;"l

fatigue loading by means of acoustic emigsion provides a simple test procedure
by which we can determine "when" and "where" damage occurs and it holds
potential for determining 'why'" damage occurred, though only on the qualitative
level at this stage. By applying acoustic emission to the test specimen,
decisions concerning when and where to conduct more detailed NDT examinations

:; such as ultrasonic C-scan, X-ray radiography, replica technique, etc., can be
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readily made and consequently result in a savings of time and money.

J. Visual Monitoring of Damage Progression

Recently, a closed~circuit television system (CCTV) was purchased,
with a microscope attached to the camera which allows magnification up to 250 X.
Damage progression during static and fatigue loading can be directly observed
via the CCTV, the type of predominant damage is identifiable and location and
damage progression can be precisely detected and tracked. A qualitative
correlation between the damage progression observed through the CCTIV and the

acoustic emission information (as described in part I) was easily established.

K. Failure Modes and Fracture Surfaces

Fracture surfaces of notched and unnotched unidirectional and trans-
verse specimens, subjected to various elevated temperatures, were examined
through the scanning electron microscope (SEM). The purpose of these exami-
nations was three-fold: 1) to evaluate the fabrication quality of the specimen
material tested; 2) to study the effect of elevated temperatures on the
fracture surface morphology;: and 3) to examine the dominant micro-failure
mechanisms.

Generally, the SEM studies indicate very good fiber-matrix and matrix-
matrix bonding. The low strength of the composites tested cannot be attributed
to the fabrication quality or procedures. The predominant factor in the
low strength is therefore the poor quality of the fibers used in fabricating
the composites plates, as was shown in part G. It seems therefore that quality
control testing and examination should always include an evaluation of
representative fibers used in the fabrication of any structural element before
it is fabricated.

Practically no fiber pull-out in the [O']a specimens or fiber splitting

in the [90‘]8 specimens was observed. The fibers in the [0']8 are fragmented
16
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into wedge-shaped fragments, however this shattering does not extend over

s a distance larger than two fiber-diameters.

L :s

n No significant effect of elevated temperatures (up to 316°C, 600°F)

"

o on the fracture surface morphologies has been noticed. For the [0°]8 speci-
4

mens, SEM examinations reveal no distinction between the micro-failure modes
- of specimens tested at room temperature and those tested at 316°C (600°F).
b The SEM examinations were directed toward the amount of fiber pull-out,

fracture surfaces of the broken fibers, fiber-matrix and matrix-matrix bonding,
Ay plastic deformation and micro-yielding of the aluminum matrix etc. as shown
in Figures 23 and 24. For the [90°]8 specimens the major distinction which
appeared between the room and elevated temperature morphologies was the amount of
micro-void coalescence noticed at room temperature, while at elevated temperatures
specimens exhibited a much higher degree of matrix plastic deformation,

- Figure 25. The effect of temperature on fiber-matrix bonding was inconclusive.

L. Results and Conclusions

:& We have presented the highlights of our current program on the

failure modes of boron/aluminum. It has been demonstrated that the testing
methodology employed in this program, namely the use of a variety of experi-
- mental techniques, is pertinent and even necessary to the study of a composite
» material system. A summary of the procedures, results and conclusions is
given below:
1. Experimental Set-Up
a. Computer programs for data acquisition, reduction and analyses
were successfully developed and employed. These include primarily the following

three programs: 1. data acquisition program for the laser interferometric

A

displacement gage (IDG) including data reduction, plotting and analyses to

. 3
& o 4 & 4

obtain load-COD curves and local compliances at room and elevated temperatures;

]
) various aspects of the fracture behavior, deformation characteristics and l
17 l
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2. data acquisition program for compliance gage and strain gages including
data reduction, plotting and analyses to obtain far-field load-displacement
curves and stress-strain diagrams at room and elevated temperatures; and
3. data acquisition program to monitor damage progression during fatigue
loading through acoustic emission, including data reduction and plotting of
acoustic emission events and event per load cycle as a function of number of

cycles at various load levels during the fatigue loading.

b. A closed-circuit television system was introduced to visually monitor
damage progression during fatigue loading. Magnification up to 250 X is
available, enabling us to follow the damage progression, damage patterns and

damage loéation.

¢. All other test techniques are described in the preceding Progress
Report and are successfully and continuously utilized. Particularly the
laser interferometric displacement gage technique has demonstrated its use~-
fullness in crack opening displacement measurments at elevated temperatures

up to 371°C (700°F).

2. Compliance Curves: local compliance curves at temperatures up to

371°C (700°F) were obtained for various notch lengths.

3. Fracture Strength: results indicate relatively low unnotched strength
for unidirectional material. The results of testing on individual boron fibers
indicate that their low strength is the major reason for the low strength

values obtained for the composite.

4. Notched Strength: elevated temperature notched strength results for
unidirectional [0']8 systems indicate that there is no effect of temperature
on notched strength. For [90°]8 specimens, however, a significant effect of

18
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elevated temperatures has been observed.

5. Load-COD Curves: experimental load-COD curves were obtained and
successfully compared with analytical model. A significant effect of

elevated temperature on load-COD curves was observed.

6. Fracture Surface and Crack Tip Damag;:
a. 1in unidirectional [0°]8 specimens irregular fracture surfaces
are observed, resulting from the pattern of the crack tip damage growth.
This crack tip damage appears in the form of plastic deformation in the fiber

direction. The plastic deformation zones multiply as the load increases.

Under fatigue loading, axial splitting is observed (via the CCTV), and a slow

crack tip damage growth as the number of cycles progresses.

b. 1in transverse [90‘]8 specimens, self-similar crack tip damage
growth 1s observed, resulting in a fairly coplanar and regular fracture

surface.

7. Failure Modes:
a. for unidirectional [0°]8, examination of fracture surfaces
reveals a strong fiber-matrix interfacial bond with no fiber-matrix debonding

at either room or elevated temperatures.

b. for transverse [90°]8 specimens, a large amount of matrix

plastic deformation at elevated temperatures is observed.

8. Acoustic emission information obtained includes accumulative counts
and events, count rate and counts per event all as a function of load, displace-
ment and number of cycles, location and amplitude distribution histograms, and

cumulative event amplitude distributions, at different load levels and number

of cycles.
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9. Acoustic emission amplitude distribution histograms obtained for
a variety of boron/aluminum laminates indicate the potential for distinguising

among the major failure mechanisms, e.g. testing individual boron fibers

clearly indicates that fiber fracture results in high amplitude levels while

matrix plastic deformation yielded low amplitude acoustic emission events.

10. Emission is obtained during fatigue loading. The amount and rate

of emission depends strongly on the dynamic stress level.

11. Monitoring acoustic emission during fatigue loading can indicate
damage progression, and it demonstrates potential for forecasting the number
of cycles to failure. This technique may also save time and money in studies

of fatigue damage initiation and progression in composite systems.

12. Acoustic-emission events during fatigue loading do not necessarily
mean additional damage; friction among existing fracture surfaces can be a

major source of acoustic emission.

13. Acoustic emission tests should be carried out with consistent
instrumentation settings, transducers, ultrasonic couplants, tabs, etc.

which are to be determined by preliminary testing.

14. The application of acoustic emission technique should be extended
to other areas of interest. Areas of importance might be fabrication pro-
cedures, impact damage, post-fatigue residual strength, guaranteeing minimum

life through moriitéring acoustic emission during proof-testing, and

reducing scatter in life.
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M. Research Activity, Publications and Presentations

1. J. Awerbuch (Principal Investigator)
Dr. Jonathan Awerbuch took a six~-month leave of absence

(April 1, 1981 to September 30, 198l1) to conduct research work at the German
Aerospace Research Establishment (DFVLR), in their Institute of Structural
Mechanics, Braunschweig, Federal Republic of Germany. During his research
work he conducted a detailed and comprehensive investigation into the potential
of utilizing acoustic emission technique to monitor damage progression in a
variety of graphite/epoxy composite laminates. The results of his work in
Germany have been compiled into nine internal reports, one conference proceed-
ings, and several seminars given in research institutes and industries in
Germany and the United States, as listed below.

"Investigation of Acoustic Emission in Off-Axis Graphite/Epoxy
Composites," DFVLR, ISM (I.B. 131-81/21) 1981.

"Monitoring Damage Progression Through Acoustic Emission in [1-45]2s
Graphite/Epoxy Laminate", DFVLR, ISM (I.B. 131-81/22), 1981.

"The Effect of Stacking Sequence in Cross-Ply Graphite/Epoxy Laminate
on Acoustic Emission Results", DFVLR, ISM (I.B. 131-81/23), 1981.

"Damage Detection in Notched Unidirectional Graphite/Epoxy Through
Acoustic Emission," DFVLR, ISM, (I.B. 131-81/24), 1981.

"Monitoring Damage Progression in Notched Unidirectional Graphite/
Epoxy During Quasi-Static Cyclic Loading Using Acoustic Emission",
DFVLR, ISM (I.B. 131-81/25), 1981.

"Acoustic Emission Monitoring of Damage in Notched [02/+65/02/—45/0/90]2s
Graphite/Epoxy Laminate', DFVLR, ISM (I.B. 131-81/26), 1981.

"“Effects of Test Conditions on Monitoring Acoustic Emission in Graphite/
Epoxy Laminates', DFVLR, ISM (I.B. 131-81/27), 1981.

"Amplitude Distribution of Acoustic Emission Events in Graphite/Epoxy
Laminates", DFVLR, ISM (I.B. 131-81/28), 1981.

"Monitoring Acoustic Emission in Adhesive Bonded Aluminum Lap Joints",
DFVLR, ISM (I.B. 131-81/29), 1981.
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"Monitoring of Damage Progression in CFRP by Acoustic Emission," presented
in the Strukturmechnik-Kolloquium 1981 on "Schadensmechanik von
Fasterverstarkten Verbundstrukturen,'" DFVLR, Institut fiur Strukturmechanik
Braunschweig, Federal Republic of Germany, June 25, 1981.

Ibid, in a seminar given at Messerschmitt-Bolkow-Blohm GMBH, Ottobrunn,
Federal Republic of Germany, July 27, 1981.

Ibid, in a seminar given at the Institut fiir ZerstOrungs-freie Priifverfahren,
Fraunhofer-Gesellschaft, Saarbrucken, Federal Republic of Germany (The
Institute for Nondestructive Testing), August 31, 1981.

Ibid, in a seminar given at Laboratorium fiir Betriebsfestigkeit, Fraunhofer
Gesellschaft, Darmstadt, Federal Republic of Germany (Laboratory for
Fatigue Behavior), September 2, 198l.

"Failure Modes and Acoustic Emission in Composite Materials," a lecture
given to the Carl-Cranz Gesellschaff in 'Festigkeit und Gestaltung von
Bauteilen aus Faserverbundwerkstoffen," Braunschweig, Federal Republic
of Germany, September 17, 1981.

PERARAA S/ Yohon MU A LR
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"Potential of Acoustic Emission in Monitoring Damage in Composite Materials",
seminar given at the Air Force Materials Laboratory, Wright Patterson AFB,
Dayton, Ohio, November 5, 1981,

His work on the fracture behavior of boron/aluminum composites have been presented

and published as follows:

"Notch Sensitivity of Boron Aluminum Laminate', presented in the »ti annual
Conference on Composites and Advanced Ceramic Materials, The American
Ceramic Society, Cocoa Beach, Florida, January 18-22, 1981.

"Fracture Behavior of Unidirectional 5.6/6061 Boron/Aluminum at Room s&nd
Elevated Temperatures" in "Mechanics of Composites Review" (Workshop),
Dayton, Ohio, October 28, 1981.

fé 2. Dr. M. J. Koczak (Research Associate)

?; Dr. Koczak's research activity has focused in the area of

;? physical metallurgy, specifically phase and thermodynamic equilibria, diffusion
éa and kinetics as applied to powder metallurgy and metal matrix composite systems.

In the area of powder metallurgy, areas of activity include an AFOSR sponsored
program on fully dense powder formed Al-Zn-Mg~Co alloys examining the inter-

actions of powder and billet processing, microstructure and mechanical properties,
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specifically fatigue response. The program was extended to high temperature
Al-Fe~Ni systems under AFOSR support. Three new programs in P/M were initiated
(1) an NADC study in high modulus duplex corrosion resistant aluminum P/M alloys,
(i1) a second program with NADC in P/M 7000 series alloys and (iii) a study in
RSR tool steels under ONR support. In the area of metal matrix composites,
Dr. Koczak assists Dr. Jonathan Awerbuch in an AFOSR sponsored B/Al fracture
initiation study. In addition, a particulate SiC/Al (7075) study is being
initiated at NADC, where student supervision/guidance is provided. Below are
listed his publications, presentations, seminars and research activities for
this program period.

Aluminum Metal Matrix Composites, AMMRC, Dover, N.J., October 1, 1980.

Metal Matrix Composites - International Harvestor, Chicago, Illinois,
February 27, 1980.

Silicon~-Carbide~Aluminum Metal Matrix Composites American Ceramic Society
Conference, Merritt Island, Florida, January 20, 1981.

Duplex Aluminum Alloys, Drexel University Seminar Series, Philadelphia,
PA, November 10, 198l.

Interface Reactions in Metal Matrix Composites, American Ceramic Society
Conference, Metal-Ceramics Division, Cocoa Beach, Florida, January 20, 1981.
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TABLE I: STRENGTH AND STIFFNESSES OF UNNOTCHED BORON ALUMINUM [0°]8 AND
[90.]8 5.6 MIL 6061F AT ROOM AND ELEVATED TEMPERATURES i
SPEC. TEMPERATURE STRENGTH LONGITUDINAL STIFFNESS®) 1
NO. °C °F [KSI] [MPa] [10°psi] [GPa] 3
A. [0°] 8
8 (b) ]
1380/4/10X 21 70  166.8 1150 28.7 198 (u . = 0.29) ]
1384/5/2 169.6 1169 29.9 206 L :
1382/1/9 172.0 1186 27.3 188 4
1383/5/1 172.2 1187 28.7 198
1381/4/11 175.9 1213 27.3 188
1401/3/9 178.0 1227 28.6 197
1399/2/7 182.2 1256 30.9 213
1380/2/7 186.5 1286 28.3 195 ]
1401/1/9 187.8 1295 - - )
1399/2/1X 198.1 1304 29.0 200 ]
1401/4/9 193.5 133 28.1 19, ,
1401/3/3 197.8 1364 30.6 211" (v = 0.23) ;
1401/4/7 198.6 1369 - - ;
1399/1/1 199.7 1377 28.9 199 *
1384/3/1 201.2 1387 27.4 189
1382/3/4 204.9 1413 28.3 195
1382/5/11X 206.3 1422 29.3 202
1399/1/9 213.8 1475 - -
1379/2/3 224.1 1545 27.1 187
, 1380/5/3 93 200 109.7 756 38.3 264®)
- 1381/4/1 ' 130.5 900 30.9 213(b)
- 1382/5/7 204 400  206.4 1423 36.4 251 ®) /231 ()
1378/1/9 l 237.9 1640 35.0 241 (b) 7256(c)
1399/4/6 242.5 1672 28.1 194(b)/193(°)(vLT-o.23>(°)
B. [90°],
1384/2/6 21 70 13.8 95 21.0 145
1384/1/2A 16.1 11 18.4 127
1383/1/7A 15.8 109 17.0 117®) (v, = 0.129)
1380/5/2 13.9 96 23.2 160
1384/1/12 16.7 115 20.3 140
1383/1/1 15.5 107 17.7 122
1384/1/2B 204 400  12.0 83 14.8 102®)
1384/2/12 1 12.6 87 16.8 116(b)
1382/4/2 316 600 5.1 35 - -

a. Extensometer data, strain gage data not shown here.

b. Strain gage data.

¢. Room temperature values.
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TABLE II: STRENGTH AND STIFFNESSES OF UNNOTCHED BORON ALUMINUM 8.0 MIL
1100F AT ROOM AND ELEVATED TEMPERATURES

SPEC. TEMPERATURE LONGITUDINAL STIFFNESS‘®)  POISSON'S STRENGTH
NO. °c °F  [106 psi] [GPa] RATIO [ksi] [MPa]
1390/1/6 21 70 31.5 217 0.209 117.5 819
1390/2/4 31.2 215 - 117.7 811
1390/3/6 ) 35.8 247 0.238 - - ;
1390/3/12 22.3 154 0.224 118 814 ,
1391/1/1 31.3 216 0.234 - - i
1391/1/2 32.2 222 0.246 - - y
1391/1/8 28.4 196 0.221 121 832 i
1390/1/8 93 200 34.1 235 0.217 129 891
1390/2/8 } 42.4 292 0.229 142 976
1390/3/6 204 400 36.8 254 0.236 123 851
1391/1/2 ‘ 34.2 236 - 126 866

_ﬁ' 1391/1/1 316 600 32.3 223 0.238 121 836

F
a. Strain gage data

, All data measured with strain gages and extensometer.
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TABLE III: STRENGTH DATA AND AMPLITUDE OF ACOUSTIC EMISSION EVENTS FOR ;
SINGLE BORON FIBERS {

|
5.6 MIL BORON FIBERS 8.0 MIL BORON FIBERS i
TEST STRENGTH AMPLITUDE TEST STRENGTH AMPLITUDE
NO. [KSI] [MPa] _[dB] NO. [RSI] [MPa] [dB] {
4
1 310.37 2140 96 1 209.11 1442 98 :
2 336.99 2324 96 2 248.69 1715 98 ]
3 362.07 2497 96 3 320.30 2208 98 3
4 367.55 2535 95 4 346.82 2391 98
5 374.88 2584 96 5 356.00 2454 98 {
6 376.96 2600 96 6 366.05 2524 98 1
7 386.84 2667 95 7 441.89 3047 98 ]
8 438.68 3025 96 8 443.52 3058 98 ‘
9 438.97 3027 95 9 450.66 3107 98 ]
10 470.22 3243 95 10 473.10 3262 98 1
11 472.59 3259 95 11 488.72 3369 98 ‘
12 472.59 3259 95 12 490.13 3379 98
13 500.78 3454 96 13 503.50 3471 98
14 518.07 3572 95 14 522.97 3606 98 ]
15 525.86 3627 96 15 546.95 3771 98 3
- 16 526.24 3629 95 16 564.29 3891 98 )
- 17 542.37 3739 38 17 578.51 3989 98
18 569.89 3930 -
oo 19 572.88 3951 95
- AVG. 450.78 3108 AVG.  432.42 2981
s.D. 81.78 563 S.D. 134.43 926.8
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TABLE IV: LOCAL COMPLIANCE OF CENTER NOTCHED BORON ALUMINUM [O°

[90°],

[0']8 5.6 Mil B/Al 6061F
SPEC. NO. UN-1382/6/3
NOTCH LENGTH = 12.89 mm (0.507 iamch)

5.6 MIL 6061F AT ELEVATED TEMPERATURE

LM St gl e g 2

1g AND

TEMP. 21 93 204 260 316 371 [°c}

LOAD NO. 70 200 400 500" 600 700 [°F]

1 4.62 4.67 5.08 5.41 6.12 7.63

2 4.52 4.61 5.06 5.34 5.92 6.74

3 4.57 4.60 5.00 5.31 5.88 6.88
Average 4.57 4.63 5.05 5.35 5.97 7.09
S.D. 0.04 0.04 0.04 0.04 0.10 0.40
Z Change - 1.31 10.5 17.1 30.6 55.1
[90’]8 5.6 MI1 B/Al 6061F
SPEC. NO. TN-1399/3/2
NOTCH LENGTH = 12.87 mm (0.507 inch)

TEMP. 21 93 204 260 316 371 [°c]

LOAD NO. 70 200 400 500 600 700 [(°F]

1 6.10 - 6.87 7.37 7.96 8.83

2 5.98 6.49 6.86 7.31 7.49 8.73

3 5.88 6.31 6.87 7.14 8.03 8.54

4 6.04 - 6.70 7.44 7.93 8.76

5 - - - 7.35 7.68 8.78

6 - - - 7.43 7.81 8.76

7 - - - - - 8.62
Average 6.00 6.40 6.74 7.34 7.82 8.72
S.D. 0.93 0.13 0.06 0.11 0.20 0.10
X Change - 6.6 13.9 22.3 30.3 45.3
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TABLE V: LOCAL COMPLIANCE OF CENTER NOTCHED BORON ALUMINUM [0°]; 5.6 MIL
6061F AT ROOM AND ELEVATED TEMPERATURES )
1
SPEC. TEMPERATURE LOCAL COMPLIANCE
NO. 2a/W °c °F 10-3 u/N
1384/5/5 0.051 21 70 1.189 i
1399/4/7 0.105 21 70 1.124 )
1401/4/1 0.200 21 70 1.845 ‘
1381/5/1 0.196 21 70 1.891 .
1382/3/7 0.198 21 70 1.734 :
1381/4/7 0.199 93 200 1.872 )
1381/5/1 0.196 204 400 1.822 1
1401/4/1 0.200 316 600 2.345 ‘
1380/2/5 0.297 21 70 2.574 ;
1399/1/8 0.299 21 70 3.488 3
1384/2/1 0.298 21 70 2.441 3
1380/3/3 0.297 21 70 2.557
1382/4/1 0.298 93 200 2.461 i
1383/5/5 0.300 93 200 2.191 ,
1399/1/8 0.300 204 400 2.675 :
1380/3/3 0.297 316° 600 3.151
1382/1/7 0.406 21 70 4.060
1399/4/9 0.402 21 70 3.975
1401/3/8 0.400 21 70 3.310
1378/1/5 0.404 21 70 3.512
1380/4/9 0.397 21 70 3.687
1382/1/7 0.406 93 200 4.015
1399/4/9 0.402 204 400 4.327
1401/3/8 0.401 316 600 3.870
1382/6/3° 0.509 21 70 4.568
1383/5/4 0.509 21 70 4.810
1382/3/9 0.507 21 70 4.576
1399/4/5 0.508 21 70 5.090
1384/3/3 0.509 21 70 5.300
1380/4/10 0.507 21 70 5.822
1382/6/3 0.509 93 200 4.626
1383/5/4 0.509 93 200 5.477
1382/6/3 0.509 204 400 5.048
1382/3/9 0.507 204 400 5.141
1399/4/5 0.508 204 400 5.940
1382/6/3 0.509 260 500 5.355
1382/6/3 0.509 316 600 5.974
- 1384/3/3 0.509 316 600 6.530 .
E 1382/6/3 0.509 371 700 7.088 :
p.
4 ]
b \
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TABLE VI: GLOBAL COMPLIANCE OF BORON ALUMINUM [0°], and [90°]; 5.6 MIL
6061F AT ROOM TEMPERATURE
[0 lg [90°]4

SPEC. GLOBAL COMPLIANCE SPEC. GLOBAL COMPLIANCE

NO. 2a/W (1073 w/N] NO. 2a/W (1073 u/N)
1384/5/5  0.051 3.073 1382/4/3 0.102 3.339
1399/4/8  0.051 3.311 1381/1/4 0.101 6.424%
1380/4/8  0.051 3.244

1378/1/10 0.300 5.465

1382/6/8  0.101 3.198" 1384/2/11 0.299 6.186
1380/4/1  0.101 2.958 1380/5/3 0.298 6.118
1399/1/5  0.102 3.634 1381/1/1 0.300 9.517%
1382/3/7  0.198 3.474 1383/2/1 0.511 9.566
1379/2/9  0.200 3.541 1384/2/1 0.500 8.672
1384/5/4  0.200 5.23%

1380/4/7 0.194 4.76%

1380/2/5  0.297 3.85
'1381/3/7  0.302 4.12

1382/5/2  0.303 4.33

1401/3/8  0.401 4.47

1378/1/5  0.404 5.39

1380/3/7  0.403 4.08

1380/4/10 0.507 4.81

1381/3/8  0.508 4.61

* Data not reliable




TABLE VII: NOTCHED STRENGTH OF BORON ALUMINUM 5.6 MIL 6061F [0']8 AT
ROOM AND ELEVATED TEMPERATURES

= SPEC.

OF O ey R W

; (2) SPEC. (2)
et No. Zafw(l) 1 qf/ao No. Za/W(l) ¥ ofloo 1
{} ]
: A. 21°C (70°F) C. 204°C (400°F) 3
1384/5/5  0.051  0.730 1381/5/1 0.196 0.696 %
: 1399/4/8  0.051  0.931 1399/1/8 0.299 0.650
- 1381/3/10 0.052  0.932 1399/4/9 0.402 0.556
' 0.864 1382/3/9 0.507 0.476
1382/6/8  0.100  0.780 1399/4/5 0.508 0.474
1380/4/1  0.101  0.669
- 1399/4/7  0.105  0.858 o e
;= 1380/3/10 0.102  0.865 D. 316%C {600°F)
n 1399/1/5  0.102  0.838 1381/3/4 0.052 0.907
i 0.802 1380/2/1 0.055 0.816
= 1382/3/7  0.198  0.685 . 0.862
_ 1379/2/9  0.200  0.766 1382/5/10 0.100 0.789
5 1380/3/4  0.199  0.698 1401/4/3 0.101 0.774
- 0.716 0.782
o 1380/2/5  0.297  0.572 1401/4/1 0.200 0.634
7u 1381/3/7  0.302  0.582 1399/2/8 0.199 0.618
1384/5/1  0.301  0.411 1384/3/4 0.203 0.721
1381/1/2  0.299  0.632 0.658
iggg;ﬁjg g’gg; g°§3g 1380/3/3 0.297 0.610
: -3*335 1382/5/5 0.301 0.586
. 1378/1/3 0.300 0.754
1371/1/5  0.403  0.526 0.650
L ] o 4
iggg;zfg g.gg; 8'28: 1401/3/8 0.401 0.505
13997117 o.d01 o ses 1380/4/2 0.402 0.544
138173 0.403  0.347 1382/6/2 0.408 0.623
1382/3/1  0.401  0.489 0.557
1382/5/8  0.421  0.523 1384/3/3 0.509 0.504
1383/6/1  0.402  0.556 1381/3/3 0.506 0.497
0.526 1382/1/2 0.506 0.431
1380/4/10 0.507  0.496 1382/6/3 0.509 -0.492
1381/3/8  0.505  0.455 0.481
1380/3/8  0.508  0.496
1399/1/6  0.507  0.489
1382/5/6  0.507  0.442
- 1380/4/6 0.509 0.480 1. a ... half notch length
f} 1382/4/2 0.505 -%4%g% W ... specimen width
2. Oyeee unnotched strength
o ° °
3 B. 93°C (200°F) Og... notched strength
133;525; g';gg g'gzi Y ... isotropic width correction
1382/1/7  0.406  0.514 factor

1383/5/4 0.509 0.520
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TABLE VIII:

NOTCHED STRENGTH OF BORON ALUMINUM 5.6 MIL 6061F [90°]

AT ROOM AND ELEVATED TEMPERATURES

8

TEMPERATURE NOTCHED STRENGTH

2a/W PC °F [KSI] [MPa]

0.10 21 70 12.78 88.1

204 400 8.89 61.3

316 600 5.93 40.9

0.30 21 70 11.66 80.4

204 400 8.30 57.2

316 600 4.87 33.6

. 0.50 21 “70 7.86 54.2

204 400 6.11 42.1

316 600 3.02 20.8
L
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TABLE IX: FRACTURE DATA FOR BORON ALUMINUM 5.6 MIL 6061F LAMINATES g

!
SPEC. LAMINATE GLOBAL COMPLIANCE STRENGTH ;
NO. TYPE 2a/W 10-3 /N [KSI] [MPa)
1385/5/7 (£45],,  0.202 8.248 16.46  113.5 :
4
1394/5/9 [0/90),,  0.054 3.670 73.41  506.1
1374/4B/1 0.104 4.28 75.87  523.1
1394/4A/3 0.200 - 41.15  311.3 3
i
1394/5/1 0.305 4.76 39.25  270.6
1394/4B/3 0.405 5.95 29.91  206.2 ;
1394/5/3 ‘ 0.502 7.99 31.20  215.1 ‘4
1521/48 [0,/245]  0.201 5.05 64.65  445.7 ;
1524/22 [0/£45/90]_ 0.201 5.504 40.32  278.0 :
]
;
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